2014年2月9日日曜日

KKスキーム

河村・桑原スキームについてです。

1984年のLESに関する論文だったかと思います。

数値解析のうち、移流項の解法は以下の流れで勉強しました(私の場合)。

・中央差分(必ず発散)
・1次精度風上差分(解けるけど解が鈍る)
→中央差分の方が精度が良さそうだが解けない。なぜなら移流項(対流項)は移流速度に乗って情報が上流から下流に伝搬するからである。1次精度風上差分の場合、意図しない所で、拡散的な項(数値粘性)が入っているため解が鈍る。

・LaxWendroff法(2次精度だが振動が入る)
・MacCormack法(2次精度だが振動が入る)
→1次精度風上差分では数値粘性が入っていたため、安定的に解けた。同様の考え方で人工粘性を入れることで、振動を小さくする。

・KKスキーム
→3次精度を実現するために4次精度の中央差分+4次の拡散項を入れる。振動は残るが、河村先生の論文以降、実現象解明へ適用されてきた実績がある。

以降、QUICK、TVD(MUSCL系、Non-MUSCL系)、CIP(オリジナル、有理関数補間、CSL系)の勉強をしました。個人的にはCIP-CSLR1が好きですが、既存のコードの書き換えは結構大変です。マルチモーメントなので・・・。
その後は、小松先生の6Point Scheme、牛島先生のQSIスキーム、ENO、WENO等もかじってます。

今回、気が向いて、KKスキームについてちょっと勉強し直しました。
ベンチマークで使われる2D-Cavity Flowに適用しようと考えてます。
非圧縮性流体の解析なので、MAC系の解法を使って、移流項にKKスキームをと・・。

KKスキームは非保存系のスキームでした。ということで、ある論文の方法を使って保存系に変形しました。線形移流方程式に対して、保存系、非保存系で解いた結果、同様の結果を得られたので、適用は出来そうです。

うまくいったら、結果を載せようと思います。

0 件のコメント:

コメントを投稿